iPhone 4S not iPhone 5

Technically the iPhone 4S doesn’t really pull ahead of the competition: Android-based phones like the Samsung Galaxy S II.

The iPhone 4S even has some worse specifications than the iPhone 4. It is 3 grams heavier and its standby battery life is 30% less. The screen is no larger – it remains smaller than the standard set by the competition. On the other hand the user experience is improved in several ways: the phone is more responsive thanks to a faster processor; it takes better photographs; and Apple has taken yet another whack at the so-far intractable problem of usable voice control. A great benefit to Apple, though not so much to its users, is that the new Qualcomm baseband chip works for all carriers worldwide, so Apple no longer needs different innards for AT&T and Verizon (though Verizon was presumably disappointed that Apple didn’t add a chip for LTE support).

Since its revolutionary debut, the history of the iPhone has been one of evolutionary improvements, and the improvements of the iPhone 4S over the iPhone 4 are in proportion to the improvements in each of the previous generations. The 4S seems to be about consolidation, creating a phone that will work on more networks around the world, and that will remain reliably manufacturable in vast volumes. It’s a risk-averse, revenue-hungry version, as is appropriate for an incumbent leader.

The technical improvements in the iPhone 4S would have been underwhelming if it had been called the iPhone 5, but for a half-generation they are adequate. By mid-2012 several technologies will have ripened sufficiently to make a big jump.

First, Apple will have had time to move their CPU manufacturing to TSMC’s 28 nm process, yielding a major improvement in battery life from the 45 nm process of the current A5, which will be partially negated by the monstrous power of the rumored 4-core A6 design, though the Linley report cautions that it may not be all plain sailing.

Also by mid-2012 Qualcomm may have delivered a world-compatible single-chip baseband that includes LTE (aka ‘real 4G’).

But the 2012 iPhone faces a serious problem. It will continue to suffer a power, weight and thin-ness disadvantage relative to Samsung smartphones until Apple stops using LCD displays. Because they don’t require back-lighting, Super AMOLED display panels are thinner, lighter and consume less power than LCDs. Unfortunately for Apple, Samsung is the leading supplier of AMOLED displays, and Apple’s relationship with Samsung continues to deteriorate. Other LCD alternatives like Qualcomm’s Mirasol are unlikely to be mature enough to rely on by mid-2012. The mid-2012 iPhone will need a larger display, but it looks as though it will continue to be a thick, power hungry LCD.

HTML 5 takes iPhone developer support full circle

Today Rethink Wireless reported that Facebook is moving towards HTML 5 in preference to native apps on phones.

When the iPhone in arrived 2007, this was Steve Jobs’ preferred way to do third party applications:

We have been trying to come up with a solution to expand the capabilities of the iPhone so developers can write great apps for it, but keep the iPhone secure. And we’ve come up with a very. Sweet. Solution. Let me tell you about it. An innovative new way to create applications for mobile devices… it’s all based on the fact that we have the full Safari engine in the iPhone. And so you can write amazing Web 2.0 and AJAX apps that look and behave exactly like apps on the iPhone, and these apps can integrate perfectly with iPhone services. They can make a call, check email, look up a location on Gmaps… don’t worry about distribution, just put ‘em on an internet server. They’re easy to update, just update it on your server. They’re secure, and they run securely sandboxed on the iPhone. And guess what, there’s no SDK you need! You’ve got everything you need if you can write modern web apps…

But the platform and the developer community weren’t ready for it, so Apple was quickly forced to come up with an SDK for native apps, and the app store was born.

So it seems that Apple was four years early on its iPhone developer solution, and that in bowing to public pressure in 2007 to deliver an SDK, it made a ton of money that it otherwise wouldn’t have:

A web service which mirrors or enhances the experience of a downloaded app significantly weakens the control that a platform company like Apple has over its user base. This has already been seen in examples like the Financial Times newspaper’s HTML5 app, which has already outsold its former iOS native app, with no revenue cut going to Apple.

ITExpo West — The State of VoIP Peering

I will be moderating a session at ITExpo West on Monday 4th October at 2:15 pm: “The State of VoIP Peering,” will be held in room 304C.

Here’s the session description:

VoIP is a fact – it is here, and it is here to stay. That fact is undeniable. To date, the cost savings associated with VoIP have largely been enough to drive adoption. However, the true benefits of VoIP will only be realized through the continued growth of peering, which will keep calls on IP backbones rather than moving them onto the PSTN. Not only will increased peering continue to reduce costs, it will increase voice call quality – HD voice, for instance, can only be delivered on all-IP calls.

Of course, while there are benefits to peering, traditional carriers have traditionally not taken kindly to losing their PSTN traffic, for which they are able to bill by the minute. But, as the adoption of IP communications continues to increase – and of course the debate continues over when we will witness the true obsolescence of the PSTN – carriers will have little choice but to engage in peering relationships.

This session will offer an market update on the status of VoIP peering and its growth, as well as trends and technologies that will drive its growth going forward, including wideband audio and video calling.

The panelists are:

This is shaping up to be a fascinating session. Rico can tell us about the hardware technologies that are enabling IP end-to-end for phone calls, and Mark and Grant will give us a real-world assessment of the state of deployment, the motivations of the early adopters, and the likely fate of the PSTN.

Skype’s international traffic growing fast

At CES last week Josh Silverman, Skype’s CEO mentioned that Skype’s international voice traffic went up 75% in 2009. This has now been approximately confirmed by Telegeography, which now puts Skype’s share of international voice traffic at 13%, up from 8% in 2008. That’s an increase of over 60% year on year.

Josh Silverman also mentioned that Skype was being downloaded at a rate of well over 300,000 downloads per day. Yes, per day. This number matches CKIPE’s observation that Skype added 2.5 million new users in the 11 days after Christmas 2009.

If you are interested in Skype numbers you can get more at CKIPE and SkypeNumerology.

HD Voice – state of deployment

At the HD Voice Summit in Las Vegas last week, Alan Percy of AudioCodes gave a presentation of the state of deployment of HD Voice, citing three levels of deployment: announced interest, trials and service deployment.

Percy’s take was that in the “Crossing the Chasm” technology adoption lifecycle, HD Voice is right at the chasm.

Here is his list, augmented with input from Jan Linden of GIPS,Tom Lemaire of FT/Orange, Doug Mohney of HD Voice News and Dave Erickson of Wyde Voice:

Category Company Stage
PC VoIP Skype >500 m downloads
QQ (China) >500 m downloads
Gizmo5 (now Google)
Wireline telco France Telecom 500K HD users
British Telecom Trials
FT/Orange Spain Deployed 1Q09
FT/Orange Poland Deploys 1Q10
Mobile Orange (Moldova) Production
Orange (UK) Deploys 3Q10
Orange (Belgium) Deploys 2010
CLEC VoIP Alteva Production
SimpleSignal Production
Ooma 25K HD users
8×8 >70K HD users
OnSIP Production
Phone.com Trials
US MSOs CableVision/Lightpath Limited Trials
Conferencing ZipDX Production
ClearOne Production
Citrix Production
FreeConferenceCall.com Production
Global Crossing Limited Trials

The main codecs in each of these deployments are: Skype:SILK; QQ, Citrix, Freeconferencecall:iSAC; mobile:AMR-WB; all others: G.722.

Alan pointed out the conspicuous lack of involvement of the cable companies (MSOs), even though Cable Labs has done a good job of creating HD specifications for them.

HD Voice Numbers

50% of consumers say they would change their telephone service provider to get better sound quality, according to Tom Lemaire, Sr. Director of Business Development at Orange/France Telecom North America, speaking at the CES HD Voice Summit this week (Orange/France Telecom has the largest deployment of HD Voice of any traditional telco). Rich Buchanan, Chief Marketing Officer at Ooma, said at the same session that his surveys show that 65% of consumers would change their provider to get better voice quality.

Bearing in mind that we know from observation that consumers value both mobility and price above call quality, these survey numbers fall into the “interesting if true” category.

Lemaire and Buchanan also said that their logs show that the average call in HD lasts longer than the average narrowband call, though they didn’t give numbers.

DiVitas partners with Avaya

Last week Avaya announced that it has chosen DiVitas as its preferred partner for mobile unified communications (UC). The companies will do joint marketing and cross-training of their sales forces in a reference sale mode. This is huge for DiVitas because it opens Avaya’s distribution channel to it. According to Phil Klotzkin, Avaya’s senior manager for UC, this channel supplies 20% of the business phone systems world-wide.

The DiVitas solution plugs a small but important gap in Avaya’s product line. Avaya already has a mobile unified communications solution, called one-X Mobile.

One-X Mobile extends PBX features to cell phones, notably the ability to give out a single number that rings on both your cell phone and your desk phone; the ability to do PBX-related actions like 4 digit dialing and transfers; visual voicemail; and the ability to move a call in progress between the cell-phone and the desk phone.

The DiVitas product offers a comparable solution set, but goes beyond one-X Mobile with Wi-Fi voice and a range of social networking features including IM and Presence. Because it uses Wi-Fi, the DiVitas solution requires a dual-mode handset. Virtually all new smartphones are dual-mode, but with the exception of Nokia’s Eseries and Nseries, few of them are well suited to voice over Wi-Fi. One-X Mobile uses the cellular voice channel rather than Wi-Fi, so it runs on a wide variety of phones.

For IM related features both DiVitas and Avaya’s desktop Integrated Presence Server use open source Jabber software. The two will be integrated with each other by the end of the year.

DiVitas/Avaya system diagram

For now the DiVitas handset software (client) is not integrated with the one-X Mobile handset software – the customer will choose one or the other for each user. The DiVitas client and the one-X Mobile client will each retain their different look and feel, and the one-X Mobile client will continue to run on single-mode phones and the DiVitas client on dual-mode.

In a recent interview, Klotzkin said that one-X Mobile is sufficient for most customers, but that there are a few for which dual-mode functionality is essential. Partnering with DiVitas enables Avaya to satisfy those customer needs. One such customer is CSX, the freight company. Some of its far-flung operations are in areas with no cellular coverage; Wi-Fi solves this problem. Avaya has been working with CSX on dual-mode solutions since 2004, when Avaya, Motorola and Proxim introduced the very first dual-mode system.

According to Vivek Khuller, CEO of DiVitas, “CSX has been working with Avaya since the earliest days of dual-mode telephony, and they are finally satisfied. It’s an important accomplishment for both our companies.”

Because the DiVitas solution uses smart-phones CSX gets a useful side benefit, namely that it can run proprietary application software on the phones, eliminating the need for its employees to carry a laptop. The other side benefit is that even in areas of cellular coverage the Wi-Fi connection can be used to save on cellular minutes.

So everybody gains. Avaya plugs a troublesome gap in its product line; DiVitas gets an excellent distribution channel; the Avaya channel adds a fully supported best-of-breed solution to its portfolio; and end users get the familiarity of Avaya with the handset technology of Nokia and the DiVitas software that weaves them together into a user-friendly package.

Linley Report on Mobile Connectivity Chips Released

I have been working for some time on a report about mobile connectivity chips. This is an interesting market, one that is so hot that it is actually going to continue to grow in 2009 as the overall cell phone market declines by 10%.

The term “connectivity” denotes all the radios in a cell phone that are not cellular radios. There are a lot of them. The main ones are Bluetooth, FM radio, GPS and Wi-Fi. Others beginning to appear in handsets are TV and NFC. Further out in time are 60 GHz and White Spaces radios.

The cell phone market deals in massive volumes – about 1.2 billion handsets were sold in 2008. It also has some stringent requirements. The market demands chips that are small, cheap, battery-life conserving and easy to design-in. These considerations have driven chip vendors to combine multiple connectivity radios onto single chips. The first combo chips were Bluetooth plus FM. Then came Bluetooth plus FM plus Wi-Fi then most recently Bluetooth plus FM plus GPS.

Because the market is so big, the competition is intense. The 2008 leaders in Bluetooth were Broadcom and CSR; in Wi-Fi TI, ST-Ericsson and Marvell; in GPS TI and Infineon; and in FM ST-Ericsson and Silicon Labs.

These vendors are leap-frogging each other on performance and features. 2009 will see major changes in market share as some vendors fail to refresh their old product lines, others refresh their product lines but with inadequate products, and new entrants come in with better solutions.

Fixed Mobile Substitution and Voice over Wi-Fi

Getting rid of your land-line phone and relying on your cell phone instead is called Fixed Mobile Substitution (FMS).

A report from the National Center for Health Statistics of the Centers for Disease Control (CDC) shows a linear increase in the number of households that have a cell phone but no land-line, starting at 4.4% in 2004 and reaching 16.1% in the first half of 2008.
US Fixed Mobile Substitution 2005-2008 - source: CDC

These numbers match those in a recent Nielsen report on FMS.

FMS will most likely accelerate in 2009 because of the recession. It will be interesting to see by how much. We will reach a tipping point soon. 13% of households have a landline that they don’t use.

There are about 112 million occupied housing units in the US, and about 71 million broadband subscribers.

So what does this mean for Wi-Fi VoIP? One of the primary reasons for FMS is to save money; it is more prevalent in lower income households. There are two kinds of phone that do VoWi-Fi, smartphones and UMA phones. Smartphones are expensive, and probably less common among the cord-cutting demographic – except that that demographic is also younger and better educated as well as having a modest income – many are students.

Wi-Fi VoIP in smart phones is still negligible, but the seeds are planted: vigorous growth of smart phones, Wi-Fi attach rate to smart phones trending to 100%, a slow but steady opening up of smart phones to third party applications, broadband in most homes, Wi-Fi growing in all markets.

A not so perfect Storm

The Verizon Storm may be heading for failure in more than one way. A raft of reviewers, led by David Pogue of the New York Times are trashing its usability. This means that even with the marketing might of Verizon behind it it may not fulfill its goal of being a bulwark against the iPhone in the enterprise.

But the Storm was an experiment in another way by Verizon. The other three major American mobile network operators have capitulated to Wi-Fi in smartphones. Against the new conventional wisdom, Verizon decided to launch a new flagship smartphone without Wi-Fi. The Storm looks like a trial balloon to see whether Wi-Fi is optional in modern smartphones. If the Storm is a success, it will demonstrate that it is possible to have credible business smartphones without Wi-Fi. But if it turns out to be a flop because of other factors, it will not be a proof point for Wi-Fi either way.

But Wi-Fi is a closed issue by now for all the network operators, perhaps even including Verizon. Phones have lead times of the order of a year or so, and controversies active back then may now be resolved. Verizon covered its bets by launching three other smartphones around the same time as the Storm, all with Wi-Fi (HTC Touch Pro, Samsung Omnia, Samsung Saga).

Before its launch, AT&T hoped that the iPhone would stimulate use of the cellular data network. It succeeded in this, so far beyond AT&T’s hopes that it revealed a potential problem with the concept of 3G (and 4G) data. The network slows to a crawl if enough subscribers use data intensively in small areas like airports and conferences. Mobile network operators used to fear that if phones had Wi-Fi subscribers would use it instead of the cellular data network, causing a revenue leak. AT&T solved that problem with the iPhone by making a subscription to the data service obligatory. T-Mobile followed suit with the Google phone. So no revenue leak. With the data subscription in hand, Wi-Fi is a good thing for the network operators because it offloads the 3G network. In residences and businesses all the data that goes through Wi-Fi is a reduction in the potential load on the network. In other words, a savings in infrastructure investment, which translates to profit. This may be some of the thinking behind AT&T’s recent acquisition of Wayport. The bandwidth acquired with Wayport offloads the AT&T network relatively cheaply. AT&T’s enthusiasm for Wi-Fi is such that it is selling some new Wi-Fi phones without requiring a data subscription.

The enterprise market is one that mobile network operators have long neglected. It is small relative to the consumer market, and harder to fit into a one-size-fits-all model. Even so, in these times of scraping for revenue in every corner, and with the steady rise of the Blackberry, the network operators are taking a serious look at the enterprise market.

The device manufacturers are way ahead of the network operators on this issue: the iPhone now comes with a lot of enterprise readiness Kool-Aid; Windows Mobile makes manageability representations, as does Nokia with its Eseries handsets. RIM, the current king of the enterprise smartphone vendors also pitches its IT-friendliness.

Wi-Fi in smartphones has benefits and drawbacks for enterprises. One benefit is that you have another smart device on the corporate LAN to enhance productivity. A drawback is that you have another smart device on the corporate LAN ripe for viruses and other security breaches. But that issue is mitigated to some extent if smartphones don’t have Wi-Fi. So it’s arguable that the Storm may be more enterprise-friendly as a result of its lack of Wi-Fi. Again, if the Storm becomes a hit in enterprises that argument will turn out to hold water. If the Storm is a flop for other reasons, we still won’t know, and it will have failed as a trial balloon for Wi-Fi-less enterprise smartphones.